STRUCTURAL CALCULATIONS

Project:

Vanderwall Residence 7179 Holly Hill Drive Mercer Island, WA 98040

Architect:

Conard Romano Architects 518 28th Avenue East Seattle, WA 98112

Structural Engineer:

Harriott Valentine Engineers, Inc. 1932 First Avenue, Suite 720 Seattle, WA 98101 tel. 206-624-4760

Harriott Valentine Engineers Inc.

SECTION 1: GENERAL

1932 First Avenue, Suite 720 Seattle, Washington 98101-2447 tel. 206-624-4760 | fax 447-6971

OSHPD

Vanderwall

7179 Holly Hill Dr, Mercer Island, WA 98040, USA

Latitude, Longitude: 47.5386476, -122.243156

		Pear Tree Ln Neadow Ln
Goog	gle	Fir Ln - HARCER Way SE 72Nd St
Date		10/9/2020, 12:32:27 PM
Design Co	ode Referen	Ice Document ASCE7-10
Risk Cate	gory	ll D - Stiff Soil
Type	Value	Description
S.	0.563	MCE_{R} ground motion (for 1.0s period)
Suc	1 472	Site-modified spectral acceleration value
S	0.944	
о _{М1}	0.844	Site-modified spectral acceleration value
SDS	0.981	Numeric seismic design value at 0.2 second SA
S _{D1}	0.563	Numeric seismic design value at 1.0 second SA
Туре	Value	Description
SDC	D	Seismic design category
Га Г	1	
Fv	1.5	Site amplification factor at 1.0 second
PGA	0.613	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.613	Site modified peak ground acceleration
ΤL	6	Long-period transition period in seconds
SsRT	1.472	Probabilistic risk-targeted ground motion. (0.2 second)
SsUH	1.559	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration
SsD	3.624	Factored deterministic acceleration value. (0.2 second)
S1RT	0.563	Probabilistic risk-targeted ground motion. (1.0 second)
S1UH	0.608	Factored uniform-nazard (2% probability of exceedance in 50 years) spectral acceleration.
S1D	1.306	Factored deterministic acceleration value. (1.0 second)
PGAd	1.37	Factored deterministic acceleration value. (Peak Ground Acceleration)
C _{RS}	0.944	Mapped value of the risk coefficient at short periods

10/9/2020

Туре	Value	Description
C _{R1}	0.925	Mapped value of the risk coefficient at a period of 1 s

DISCLAIMER

While the information presented on this website is believed to be correct, <u>SEAOC</u> <u>/OSHPD</u> and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

Harriott Valentine Engineers Inc.

SECTION 2: FRAMING

1932 First Avenue, Suite 720 Seattle, Washington 98101-2447 tel. 206-624-4760 | fax 447-6971 Harriott Valentine Engineers Inc.

CRITERIA

FRAMING- Original House built 1967

roof	dead	cedar shingles+ battens 1/2" plywood 2x8 @ 24"oc-rafter 2x8 @ 24"oc-ceiling R38 insulation 5/8" gyp. wallboard slope factor miscellaneous	2.5 1.5 1.5 1.5 1.4 2.8 0.7 2.1 15% 14.0 psf	live snow	25.0 psf
	total	dead + live	39.0 psf		
deck (NEW)	dead	pavers, pedestals, waterrproof 3/4" plywood 11-7/8" TJI 230 @ 16"oc 1/2" plywood finish soffit sheathing	30.0 2.3 2.3 1.5 1.1	live deck	60.0 psf
	total	miscellaneous	2.8 7% 40.0 psf		
	dead	dead + live	100.0 psf		
main floor	total	3/8" tile + thinset mortar 3/4" plywood 2x10 @ 16"oc acoustic insulation 1/2" gyp. wallboard miscellaneous	6.7 2.3 2.8 0.8 2.2 3.2 18%	live residential	40.0 psf
		dead + live	58.0 psf		
walls		3/4" cedar bevel siding 1/2" plywood 2x4 @ 16"oc R21 insulation 1/2" gyp. wallboard miscellaneous	1.4 1.5 1.1 0.8 2.2 1.0 13% 8.0 psf		

ROOF BEAMS

VANDERWIALL FLOOR/DECK BEAMS

BEAMS (SIMPLE SPAN UNIFORM LOAD) ROOF-EXISTING FRAMING

<u> </u>	w L		<mark>(ceiling)</mark> total floor = live load =	27 psf 20 psf	<mark>(roof-rafter w/</mark> total roof = snow load =	o ceiling) 34 psf 25 psf	
location	<u>criteria</u>		demand		<u>capacity</u>		
xRidge max span	w (total) = w (live) = L = floor = roof = wall =	408 plf 300 plf 12.75 ft 0.00 ft 12.00 ft 0.00 ft	V = M = El (total) = El (live) =	2.60 k 8.29 k-ft 3.81E+08 lb-in2 4.20E+08 lb-in2 <u>existir</u>	Vr = Mr = El = d (total) = d (live) =	5.43 k 8.49 k-ft 7.06E+08 lb-in2 0.34 in = L/ 0.25 in = L/ DF 4x12	445 606
location	<u>criteria</u>		<u>demand</u>		<u>capacity</u>		
xRafter	w (total) = w (live) = L = floor = roof = wall =	68 plf 50 plf 12.00 ft 0.00 ft 2.00 ft 0.00 ft	V = M = El (total) = El (live) =	0.41 k 1.22 k-ft 5.29E+07 lb-in2 5.83E+07 lb-in2	Vr = Mr = EI = d (total) = d (live) = <u>existing DF#1</u>	1.25 k 1.45 k-ft 8.57E+07 lb-in2 0.37 in = L/ 0.27 in = L/	389 529
location	<u>criteria</u>		<u>demand</u>		<u>capacity</u>		
xCeiling	w (total) = w (live) = L = floor = roof = wall =	54 plf 40 plf 16.00 ft 2.00 ft 0.00 ft 0.00 ft	V = M = EI (total) = EI (live) =	0.43 k 1.73 k-ft 9.95E+07 lb-in2 1.11E+08 lb-in2	Vr = Mr = El = d (total) = d (live) = <u>existing DF#1</u>	1.25 k 1.45 k-ft 8.57E+07 lb-in2 0.93 in = L/ 0.69 in = L/ DF 2x8	207 279
location	<u>criteria</u>		<u>demand</u>		<u>capacity</u>		
xRoof Header	w (total) = w (live) = L = floor = roof = wall =	204 plf 150 plf 5.00 ft 0.00 ft 6.00 ft 0.00 ft	V = M = El (total) = El (live) =	0.51 k 0.64 k-ft 1.15E+07 lb-in2 1.27E+07 lb-in2	Vr = Mr = El = d (total) = d (live) = <u>use</u>	1.90 k 1.84 k-ft 5.41E+07 lb-in2 0.05 in = L/ 0.04 in = L/ (2)2x6	1132 1539

JOB SUMMARY REPORT

Vanderwall

Roof Resupport			
Member Name	Results	Current Solution	Comments
Roof: Drop Beam-R1 Header	Passed	1 piece(s) 3 1/2" x 9 1/4" 2.0E Parallam® PSL	
Roof: Drop Beam-R2 Header	Passed	1 piece(s) 5 1/4" x 9 1/4" 2.0E Parallam® PSL	
Roof: Drop Beam-R3 Header	Passed	1 piece(s) 4 x 8 Hem-Fir No. 1	
Roof: Drop Beam-R4 Header	Passed	1 piece(s) 4 x 10 Hem-Fir No. 1	
Roof: Flush Beam-R5 SKYLIGHT HDR	Passed	2 piece(s) 2 x 8 Hem-Fir No. 2	
Roof: Flush Beam-R6 STR. RIM AT OH	Passed	1 piece(s) 4 x 4 Hem-Fir No. 2	
Roof: Drop Beam-R7 Header	Passed	1 piece(s) 4 x 8 Hem-Fir No. 1	
Roof: Flush Beam-R8	Passed	2 piece(s) 2 x 8 Hem-Fir No. 2	
Roof: Flush Beam-R9	Passed	1 piece(s) 1 3/4" x 5 1/2" 2.0E Microllam® LVL	
Level-Deck			
Member Name	Results	Current Solution	Comments
Floor: Joist-DJ1	Passed	1 piece(s) 11 7/8" TJI ® 210 @ 16" OC	
Floor: Joist-DJ2	Passed	1 piece(s) 2 x 4 Hem-Fir No. 2 @ 16" OC	
Floor: Joist-DJ3	Passed	1 piece(s) 11 7/8" TJI ® 210 @ 16" OC	
Floor: Flush Beam-D1	Passed	1 piece(s) 5 1/4" x 11 7/8" 2.0E Parallam® PSL	
Floor: Flush Beam-D2 AT STEP	Passed	1 piece(s) 3 1/2" x 11 7/8" 2.0E Parallam® PSL	
Floor: Flush Beam-D3	Passed	1 piece(s) 5 1/4" x 11 7/8" 2.0E Parallam® PSL	
Floor: Flush Beam-D4 at HD straps	Failed	1 piece(s) 3 1/2" x 11 7/8" 2.0E Parallam® PSL	An excessive uplift of -3588 lbs at support located at 14' 8" failed this product.
Floor: Drop Beam-D5 stringers	Passed	1 piece(s) 4 x 6 Hem-Fir No. 2	
Floor: Flush Beam-D6	Passed	1 piece(s) 4 x 12 Hem-Fir No. 2	
Floor: Flush Beam-D7	Passed	1 piece(s) 4 x 12 Hem-Fir No. 2	
Floor: Drop Beam-DL1-ledger span openings	Passed	1 piece(s) 3 1/2" x 9 1/4" 2.0E Parallam® PSL	
Floor: Drop Beam-DL2-ledger span openings	Passed	2 piece(s) 1 3/4" x 7 1/4" 2.0E Microllam® LVL	
Floor: Drop Beam-REPLACE Hdrs	Passed	1 piece(s) 3 1/2" x 9 1/4" 2.0E Parallam® PSL	

ForteWEB Software Operator Kathryn Warner Harriott Valentine Engineers (206) 624-4760 kwarner@harriottvalentine.com Job Notes

12/11/2020 2:57:22 AM UTC ForteWEB v3.1 File Name: Vanderwall

Roof Resupport, Roof: Drop Beam-R1 Header 1 piece(s) 3 1/2" x 9 1/4" 2.0E Parallam® PSL

11'

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2188 @ 1 1/2"	6563 (3.00")	Passed (33%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1800 @ 1' 1/4"	7198	Passed (25%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	6021 @ 5' 9"	14278	Passed (42%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.199 @ 5' 9"	0.563	Passed (L/679)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.319 @ 5' 9"	0.750	Passed (L/424)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

2

PASSED

• Deflection criteria: LL (L/240) and TL (L/180).

0

1

	Bearing Length			Loads t	o Supports		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.50"	823	1366	2189	None
2 - Trimmer - HF	3.00"	3.00"	1.50"	823	1366	2189	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	Continuous	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 11' 6"	N/A	10.1		
1 - Uniform (PSF)	0 to 11' 6" (Top)	9' 6"	14.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Kathryn Warner Harriott Valentine Engineers (206) 624-4760 kwarner@harriottvalentine.com	

Roof Resupport, Roof: Drop Beam-R2 Header 1 piece(s) 5 1/4" x 9 1/4" 2.0E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2748 @ 1 1/2"	9844 (3.00")	Passed (28%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2354 @ 1' 1/4"	10797	Passed (22%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	9449 @ 7' 1 1/2"	21417	Passed (44%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.310 @ 7' 1 1/2"	0.700	Passed (L/542)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.504 @ 7' 1 1/2"	0.933	Passed (L/333)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

PASSED

• Deflection criteria: LL (L/240) and TL (L/180).

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.50"	1056	1692	2748	None
2 - Trimmer - HF	3.00"	3.00"	1.50"	1056	1692	2748	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	Continuous	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 14' 3"	N/A	15.2		
1 - Uniform (PSF)	0 to 14' 3" (Top)	9' 6"	14.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Kathryn Warner Harriott Valentine Engineers (206) 624-4760 kwarner@harriottvalentine.com	

Roof Resupport, Roof: Drop Beam-R3 Header 1 piece(s) 4 x 8 Hem-Fir No. 1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1649 @ 1 1/2"	4253 (3.00")	Passed (39%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1327 @ 10 1/4"	2918	Passed (45%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	3404 @ 4' 4 1/2"	3724	Passed (91%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.167 @ 4' 4 1/2"	0.425	Passed (L/610)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.266 @ 4' 4 1/2"	0.567	Passed (L/384)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (Ibs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.50"	610	1039	1649	None
2 - Trimmer - HF	3.00"	3.00"	1.50"	610	1039	1649	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	Continuous	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 9"	N/A	6.4		
1 - Uniform (PSF)	0 to 8' 9" (Top)	9' 6"	14.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software	Operator	Job Notes
Kathryn Warner Harriott Valentine Engi (206) 624-4760 kwarner@harriottvaler	neers tine.com	

Roof Resupport, Roof: Drop Beam-R4 Header 1 piece(s) 4 x 10 Hem-Fir No. 1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1505 @ 1 1/2"	4253 (3.00")	Passed (35%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1238 @ 1' 1/4"	3723	Passed (33%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	4140 @ 5' 9"	5596	Passed (74%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.169 @ 5' 9"	0.563	Passed (L/798)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.272 @ 5' 9"	0.750	Passed (L/496)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

Deflection criteria: LL (L/240) and TL (L/180).

• Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.50"	570	934	1504	None
2 - Trimmer - HF	3.00"	3.00"	1.50"	570	934	1504	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	Continuous	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 11' 6"	N/A	8.2		
1 - Uniform (PSF)	0 to 11' 6" (Top)	6' 6"	14.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Kathryn Warner Harriott Valentine Engineers (206) 624-4760 kwarner@harriottvalentine.com	

Roof Resupport, Roof: Flush Beam-R5 SKYLIGHT HDR 2 piece(s) 2 x 8 Hem-Fir No. 2

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	958 @ 2"	1823 (1.50")	Passed (53%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	813 @ 9 1/4"	2501	Passed (33%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1916 @ 4' 2"	2569	Passed (75%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.112 @ 4' 2"	0.400	Passed (L/860)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.178 @ 4' 2"	0.533	Passed (L/539)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

Bearing Length			Loads t	o Supports (
Total	Available	Required	Dead	Snow	Total	Accessories
2.00"	Hanger ¹	1.50"	372	625	997	See note 1
2.00"	Hanger ¹	1.50"	372	625	997	See note 1
	Total 2.00" 2.00"	TotalAvailable2.00"Hanger12.00"Hanger1	TotalAvailableRequired2.00"Hanger11.50"2.00"Hanger11.50"	TotalAvailableRequiredDead2.00"Hanger11.50"3722.00"Hanger11.50"372	TotalAvailableRequiredDeadSnow2.00"Hanger11.50"3726252.00"Hanger11.50"372625	Total Available Required Dead Snow Total 2.00" Hanger1 1.50" 372 625 997 2.00" Hanger1 1.50" 372 625 997

At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	8' o/c				
Bottom Edge (Lu)	8' o/c				
Maximum allowable bracing intervals based on applied load					

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
1 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A		
2 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A		

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	2" to 8' 2"	N/A	5.5		
1 - Uniform (PSF)	0 to 8' 4" (Front)	6'	14.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by K.Warner

ForteWEB Software Operator Job Notes Kathryn Warner Harriott Valentine Engineers (206) 624-4760 kwarner@harriottvalentine.com

12/11/2020 2:57:22 AM UTC ForteWEB v3.1, Engine: V8.1.5.1, Data: V8.0.1.0 File Name: Vanderwall Page 6 / 30

Roof Resupport, Roof: Flush Beam-R6 STR. RIM AT OH 1 piece(s) 4 x 4 Hem-Fir No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	246 @ 2"	2126 (1.50")	Passed (12%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	228 @ 5 1/2"	1409	Passed (16%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	493 @ 4' 2"	873	Passed (56%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.213 @ 4' 2"	0.400	Passed (L/452)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.349 @ 4' 2"	0.533	Passed (L/275)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Applicable calculations are based on NDS.

• This product has a square cross section. The analysis engine has checked both edge and plank orientations to allow for either installation.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Hanger on 3 1/2" HF beam	2.00"	Hanger ¹	1.50"	100	156	256	See note 1
2 - Hanger on 3 1/2" HF beam	2.00"	Hanger ¹	1.50"	100	156	256	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' o/c	
Bottom Edge (Lu)	8' o/c	

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
1 - Face Mount Hanger	HUC44	2.50"	N/A	4-10dx1.5	2-10d		
2 - Face Mount Hanger	HUC44	2.50"	N/A	4-10dx1.5	2-10d		

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	2" to 8' 2"	N/A	3.1		
1 - Uniform (PSF)	0 to 8' 4" (Front)	1' 6"	14.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by K.Warner

 ForteWEB Software Operator
 Job Notes

 Kathryn Warner
 Harriott Valentine Engineers

 (206) 624-4760
 kwarner@harriottvalentine.com

12/11/2020 2:57:22 AM UTC ForteWEB v3.1, Engine: V8.1.5.1, Data: V8.0.1.0 File Name: Vanderwall Page 7 / 30

Roof Resupport, Roof: Drop Beam-R7 Header 1 piece(s) 4 x 8 Hem-Fir No. 1

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1035 @ 1 1/2"	4253 (3.00")	Passed (24%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	763 @ 10 1/4"	2918	Passed (26%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1555 @ 3' 3"	3724	Passed (42%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.041 @ 3' 3"	0.313	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.066 @ 3' 3"	0.417	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.50"	385	650	1035	None
2 - Trimmer - HF	3.00"	3.00"	1.50"	385	650	1035	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	Continuous	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 6' 6"	N/A	6.4		
1 - Uniform (PSF)	0 to 6' 6" (Top)	8'	14.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Kathryn Warner Harriott Valentine Engineers (206) 624-4760 kwarner@harriottvalentine.com	

Roof Resupport, Roof: Flush Beam-R8 2 piece(s) 2 x 8 Hem-Fir No. 2

Sloped Length: 12' 9 13/16"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs) 1082 @ 2" 4253 (3.50") Passed (25%) 1.0 D + 1.0 S (All Spans) Shear (lbs) 1042 @ 10 5/16" 2501 Passed (42%) 1.15 1.0 D + 1.0 S (All Spans) Moment (Ft-lbs) 1906 @ 2' 9 13/16" 2569 Passed (74%) 1.15 1.0 D + 1.0 S (All Spans) Live Load Defl. (in) 0.248 @ 5' 6 5/16" 0.415 Passed (L/603) 1.0 D + 1.0 S (All Spans) Total Load Defl. (in) 0.411 @ 5' 6 13/16" 0.623 Passed (L/364) 1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 4.5/12

• Deflection criteria: LL (L/360) and TL (L/240)

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length		Loads t	o Supports			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Beveled Plate - HF	3.50"	3.50"	1.50"	405	677	1082	Blocking
2 - Hanger on 7 1/4" HF beam	2.00"	Hanger ¹	1.50"	181	248	429	See note 1

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	12' 8" o/c					
Bottom Edge (Lu)	12' 8" o/c					

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-7	Гіе					
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A	
Defer to manufacturer notes and instructions for proper installation and use of all connectors						

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 11' 10"	N/A	5.5		
1 - Uniform (PSF)	0 to 12'	1'	15.0	25.0	parallel roof
2 - Point (lb)	2'	N/A	325	625	R5

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by K.Warner

ForteWEB Software Operator	Job Notes
Kathryn Warner Harriott Valentine Engineers (206) 624-4760 kwarner@harriottvalentine.com	

12/11/2020 2:57:22 AM UTC ForteWEB v3.1, Engine: V8.1.5.1, Data: V8.0.1.0 File Name: Vanderwall Page 9 / 30

PASSED

Member Length : 12' 10 3/8"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	896 @ 2' 8 3/4"	4163 (5.50")	Passed (22%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	447 @ 3' 4 5/8"	2103	Passed (21%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	-983 @ 2' 8 3/4"	2444	Passed (40%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.124 @ 0	0.200	Passed (2L/566)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.189 @ 0	0.291	Passed (2L/370)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 4.5/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/0.2") and TL (2L/240).

• Left cantilever length exceeds 1/3 member length or 1/2 back span length. Additional bracing should be considered.

· Allowed moment does not reflect the adjustment for the beam stability factor.

• -370 lbs uplift at support located at 5' 1/2". Strapping or other restraint may be required.

	Bearing Length			Loads t	o Supports		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Beveled Plate - HF	5.50"	5.50"	1.50"	323	573	896	Blocking
2 - Hanger on 5 1/2" HF beam	5.50"	Hanger ¹	1.50"	-120	-250	-370	See note 1

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Bracing Intervals	Comments
5' 5" o/c	
5' 5" o/c	
	Bracing Intervals 5' 5" o/c 5' 5" o/c

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie										
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories				
2 - Face Mount Hanger	HU1.81/5X SLD20	2.50"	N/A	16-10dx1.5	6-10dx1.5					
Pafer to manufacturer notes and instructions for proper installation and use of all connectors										

Refer to manufacturer notes and instructions for proper installation and use of all connectors

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 1/2"	N/A	2.8		
1 - Uniform (PSF)	0 to 5' 6"	1'	15.0	25.0	parallel
2 - Point (lb)	0	N/A	100	200	R6

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by K.Warner

 ForteWEB Software Operator
 Job Notes

 Kathryn Warner
 Harriott Valentine Engineers

 (206) 624-4760
 kwarner@harriottvalentine.com

Member Length : 5' 6 11/16"

Level-Deck, Floor: Joist-DJ1 1 piece(s) 11 7/8" TJI ® 210 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	933 @ 2"	1005 (1.75")	Passed (93%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	933 @ 2"	1655	Passed (56%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	3267 @ 7' 2"	3795	Passed (86%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.214 @ 7' 2"	0.350	Passed (L/786)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.356 @ 7' 2"	0.700	Passed (L/471)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	48	40	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Hanger on 11 7/8" HF beam	2.00"	Hanger ¹	1.75" / - 2	382	573	955	See note 1
2 - Hanger on 11 7/8" HF beam	2.00"	Hanger ¹	1.75" / - 2	382	573	955	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

• ² Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments		
Top Edge (Lu)	3' 11" o/c			
Bottom Edge (Lu)	14' o/c			
TI joiste are only applyzed using Maximum Allowable brasing colutions				

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	IUS2.06/11.88	2.00"	N/A	10-10d	2-Strong-Grip	
2 - Face Mount Hanger	IUS2.06/11.88	2.00"	N/A	10-10d	2-Strong-Grip	
Defende an enderstande etc. and instruction		ef ell e en e e et e es				

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 14' 4"	16"	40.0	60.0	Deck with pavers Load

ForteWEB Software Operator Kathryn Warner Harriott Valentine Engineers (206) 624-4760 kwarner@harriottvalentine.com Job Notes

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by K.Warner

ForteWEB Software Operator Kathryn Warner Harriott Valentine Engineers (206) 624-4760 kwarner@harriottvalentine.com Job Notes

12/11/2020 2:57:22 AM UTC ForteWEB v3.1, Engine: V8.1.5.1, Data: V8.0.1.0 File Name: Vanderwall Page 12 / 30

Level-Deck, Floor: Joist-DJ2 1 piece(s) 2 x 4 Hem-Fir No. 2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	300 @ 2"	911 (1.50")	Passed (33%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	261 @ 5 1/2"	525	Passed (50%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	338 @ 2' 5"	374	Passed (90%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.106 @ 2' 5"	0.112	Passed (L/510)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.177 @ 2' 5"	0.225	Passed (L/306)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

• Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads	o Supports		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Hanger on 3 1/2" HF beam	2.00"	Hanger ¹	1.50"	129	193	322	See note 1
2 - Hanger on 3 1/2" HF beam	2.00"	Hanger ¹	1.50"	129	193	322	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 6" o/c	
Bottom Edge (Lu)	4' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie									
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
1 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A				
2 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A				

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 4' 10"	16"	40.0	60.0	Deck with pavers Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by K.Warner

 ForteWEB Software Operator
 Job Notes

 Kathryn Warner
 Harriott Valentine Engineers

 (206) 624-4760
 kwarner@harriottvalentine.com

12/11/2020 2:57:22 AM UTC ForteWEB v3.1, Engine: V8.1.5.1, Data: V8.0.1.0 File Name: Vanderwall Page 13 / 30

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

Level-Deck, Floor: Joist-DJ3 1 piece(s) 11 7/8" TJI ® 210 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	617 @ 2"	1005 (1.75")	Passed (61%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	617 @ 2"	1655	Passed (37%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	1426 @ 4' 9 1/2"	3795	Passed (38%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.049 @ 4' 9 1/2"	0.231	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.082 @ 4' 9 1/2"	0.463	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	63	40	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

PASSED

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads t	o Supports		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Hanger on 11 7/8" HF beam	2.00"	Hanger ¹	1.75" / - 2	256	383	639	See note 1
2 - Hanger on 11 7/8" HF beam	2.00"	Hanger ¹	1.75" / - 2	256	383	639	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

• ² Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	6' 2" o/c					
Bottom Edge (Lu)	9' 3" o/c					
TII jajata are any analyzad yaing Mayimum Allowable brazing colutions						

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
1 - Face Mount Hanger	IUS2.06/11.88	2.00"	N/A	10-10dx1.5	2-Strong-Grip				
2 - Face Mount Hanger	IUS2.06/11.88	2.00"	N/A	10-10dx1.5	2-Strong-Grip				
Defende warde de transmission and instructi		of all as we as to be							

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 9' 7"	16"	40.0	60.0	Deck with pavers Load

ForteWEB Software Operator Kathryn Warner Harriott Valentine Engineers (206) 624-4760 kwarner@harriottvalentine.com Job Notes

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by K.Warner

ForteWEB Software Operator Kathryn Warner Harriott Valentine Engineers (206) 624-4760 kwarner@harriottvalentine.com Job Notes

12/11/2020 2:57:22 AM UTC ForteWEB v3.1, Engine: V8.1.5.1, Data: V8.0.1.0 File Name: Vanderwall Page 15 / 30

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4336 @ 2"	11484 (3.50")	Passed (38%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3287 @ 1' 3 3/8"	12053	Passed (27%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	10762 @ 5' 3 1/2"	29854	Passed (36%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.093 @ 5' 3 1/2"	0.256	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.159 @ 5' 3 1/2"	0.512	Passed (L/775)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Column - HF	3.50"	3.50"	1.50"	1796	2540	4336	None
2 - Column - HF	3.50"	3.50"	1.50"	1796	2540	4336	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	10' 7" o/c	
Bottom Edge (Lu)	10' 7" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 10' 7"	N/A	19.5		
1 - Uniform (PSF)	0 to 10' 7" (Top)	8'	40.0	60.0	Deck with pavers

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Kathryn Warner Harriott Valentine Engineers (206) 624-4760 kwarner@harriottvalentine.com	

Level-Deck, Floor: Flush Beam-D2 AT STEP 1 piece(s) 3 1/2" x 11 7/8" 2.0E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1544 @ 2"	3281 (1.50")	Passed (47%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1333 @ 1' 1 7/8"	8035	Passed (17%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	5597 @ 7' 5"	19902	Passed (28%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.131 @ 7' 5"	0.363	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.232 @ 7' 5"	0.725	Passed (L/749)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads t	o Supports		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Hanger on 11 7/8" HF beam	2.00"	Hanger ¹	1.50"	687	890	1577	See note 1
2 - Hanger on 11 7/8" HF beam	2.00"	Hanger ¹	1.50"	687	890	1577	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	14' 6" o/c						
Bottom Edge (Lu)	14' 6" o/c						
Manianum ellen elle hun sine internele bened en enelled land							

Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

1 5						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	LUS410	2.00"	N/A	8-16d	6-16d	
2 - Face Mount Hanger	LUS410	2.00"	N/A	8-16d	6-16d	

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	2" to 14' 8"	N/A	13.0		
1 - Uniform (PSF)	0 to 14' 10" (Top)	2'	40.0	60.0	Deck with pavers

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by K.Warner

 ForteWEB Software Operator
 Job Notes

 Kathryn Warner
 Harriott Valentine Engineers

 (206) 624-4760
 kwarner@harriottvalentine.com

12/11/2020 2:57:22 AM UTC ForteWEB v3.1, Engine: V8.1.5.1, Data: V8.0.1.0 File Name: Vanderwall Page 17 / 30

PASSED

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	11417 @ 5' 2 3/4"	18047 (5.50")	Passed (63%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	4865 @ 6' 5 3/8"	12053	Passed (40%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	-18835 @ 5' 2 3/4"	29854	Passed (63%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.351 @ 0	0.349	Passed (2L/358)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.519 @ 0	0.523	Passed (2L/242)		1.0 D + 1.0 L (Alt Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Column - HF	5.50"	5.50"	3.48"	4785	6632	11417	Blocking
2 - Column - HF	3.50"	3.50"	1.50"	937	2405/-1049	3342/- 1049	None

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	15' 9" o/c	
Bottom Edge (Lu)	15' 9" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 15' 9"	N/A	19.5		
1 - Uniform (PSF)	0 to 15' 9" (Top)	7' 6"	40.0	60.0	Deck with pavers
2 - Point (lb)	0 (Front)	N/A	690	900	Drop-in beam W/ FB PSL at step

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by K.Warner

ForteWEB Software Operator Kathryn Warner Harriott Valentine Engineers (206) 624-4760 kwarner@harriottvalentine.com Job Notes

Level-Deck, Floor: Flush Beam-D4 at HD straps 1 piece(s) 3 1/2" x 11 7/8" 2.0E Parallam® PSL

An excessive uplift of -3588 lbs at support located at 14' 8" failed this product.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4674 @ 14' 8"	4674 (2.14")	Passed (100%)		1.0 D + 0.7 E (All Spans)
Shear (lbs)	4582 @ 13' 8 1/8"	12857	Passed (36%)	1.60	1.0 D + 0.7 E (All Spans)
Moment (Ft-lbs)	9909 @ 12' 6"	31844	Passed (31%)	1.60	1.0 D + 0.7 E (All Spans)
Live Load Defl. (in)	0.284 @ 8' 5/8"	0.483	Passed (L/612)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.385 @ 7' 10 9/16"	0.725	Passed (L/452)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• -290 lbs uplift at support located at 2". Strapping or other restraint may be required.

	Bearing Length			Loads to Supports (Ibs)				
Supports	Total	Available	Required	Dead	Floor Live	Seismic	Total	Accessories
1 - Hanger on 11 7/8" HF beam	2.00"	Hanger ¹	1.50"	687	890	1004/-1004	2581/- 1004	See note 1
2 - Hanger on 11 7/8" HF beam	2.00"	Hanger ¹	2.14"	687	890	5714/-5714	7291/- 5714	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	14' 6" o/c					
Bottom Edge (Lu)	14' 6" o/c					
Maximum allowable bracing intervals based on applied load						

um allowable bracing intervals based on applied lo

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	LUS410	2.00"	N/A	8-16d	6-16d	
2 - Face Mount Hanger	HGUS410	4.00"	N/A	46-16d	16-16d	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.60)	Comments
0 - Self Weight (PLF)	2" to 14' 8"	N/A	13.0			
1 - Uniform (PSF)	0 to 14' 10" (Top)	2'	40.0	60.0	-	Deck with pavers
2 - Point (lb)	12' 6" (Front)	N/A	-	-	6718	HD strap at offset Shear Walls- W/ Omega

ForteWEB Software Operator Job Notes Kathryn Warner Harriott Valentine Engineers (206) 624-4760 kwarner@harriottvalentine.com

12/11/2020 2:57:22 AM UTC ForteWEB v3.1, Engine: V8.1.5.1, Data: V8.0.1.0 File Name: Vanderwall Page 19 / 30

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by K.Warner

ForteWEB Software Operator Kathryn Warner Harriott Valentine Engineers (206) 624-4760 kwarner@harriottvalentine.com Job Notes

12/11/2020 2:57:22 AM UTC ForteWEB v3.1, Engine: V8.1.5.1, Data: V8.0.1.0 File Name: Vanderwall Page 20 / 30

Level-Deck, Floor: Drop Beam-D5 stringers 1 piece(s) 4 x 6 Hem-Fir No. 2

Overall Length: 9' 9"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	472 @ 9' 7"	2126 (1.50")	Passed (22%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	427 @ 9' 1 1/2"	1925	Passed (22%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1117 @ 4' 10 1/4"	1625	Passed (69%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.171 @ 4' 10 1/4"	0.315	Passed (L/663)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.285 @ 4' 10 1/4"	0.473	Passed (L/398)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Beam - HF	3.00"	3.00"	1.50"	194	291	485	Blocking
2 - Hanger on 5 1/2" HF beam	2.00"	Hanger ¹	1.50"	194	294	488	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

 ${\scriptstyle \bullet}\ {\scriptstyle 1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	9' 7" o/c				
Bottom Edge (Lu)	9' 7" o/c				

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
2 - Face Mount Hanger	LUS46	2.00"	N/A	4-10dx1.5	4-10d		
- Defer to manufacturer notes and instructions for prener installation and use of all connectors							

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 9' 7"	N/A	4.9		
1 - Uniform (PSF)	0 to 9' 9" (Front)	1'	35.0	60.0	Stair w/ minimum residential deck load

Member Notes

Angled span for stair rise 6.75 / Run 11- minimum design depth AFTER notching for treads

ForteWEB Software Operator Kathryn Warner Harriott Valentine Engineers (206) 624-4760 kwarner@harriottvalentine.com Job Notes

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by K.Warner

ForteWEB Software Operator Kathryn Warner Harriott Valentine Engineers (206) 624-4760 kwarner@harriottvalentine.com Job Notes

12/11/2020 2:57:22 AM UTC ForteWEB v3.1, Engine: V8.1.5.1, Data: V8.0.1.0 File Name: Vanderwall Page 22 / 30

Level-Deck, Floor: Flush Beam-D6 1 piece(s) 4 x 12 Hem-Fir No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1243 @ 2"	3189 (2.25")	Passed (39%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	669 @ 1' 2 3/4"	3938	Passed (17%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1438 @ 2' 6 1/2"	5752	Passed (25%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.006 @ 2' 6 1/2"	0.119	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.011 @ 2' 6 1/2"	0.237	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - HF	3.50"	2.25"	1.50"	533	763	1296	1 1/4" Rim Board
2 - Stud wall - HF	3.50"	2.25"	1.50"	533	763	1296	1 1/4" Rim Board
Rim Board is assumed to carry all loads applied directly above it hypassing the member being designed							

is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 11" o/c	
Bottom Edge (Lu)	4' 11" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/4" to 4' 11 3/4"	N/A	10.0		
1 - Uniform (PLF)	0 to 5' 1" (Top)	N/A	200.0	300.0	STRINGERS AT 12"oc

Member Notes

LANDING UNDER UPPER RUN

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

The product application, input design loads, dimensions and support information have been provided by K.Warner

ForteWEB Software Operator Kathryn Warner Harriott Valentine Engineers (206) 624-4760 kwarner@harriottvalentine.com

Job Notes

Level-Deck, Floor: Flush Beam-D7 1 piece(s) 4 x 12 Hem-Fir No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2051 @ 9' 6 1/2"	2126 (1.50")	Passed (96%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1641 @ 8' 7 1/4"	3938	Passed (42%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	4806 @ 4' 10 1/4"	5752	Passed (84%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.087 @ 4' 10 1/4"	0.234	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.141 @ 4' 10 1/4"	0.469	Passed (L/799)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - HF	3.50"	2.25"	1.50"	812	1311	2123	1 1/4" Rim Board
2 - Hanger on 11 1/4" HF beam	3.50"	Hanger ¹	1.50"	831	1344	2175	See note 1

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

 ${\scriptstyle \bullet}\ {\scriptstyle 1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	9' 5" o/c				
Bottom Edge (Lu)	9' 5" o/c				

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
2 - Face Mount Hanger	HHUS48	3.00"	N/A	22-10d	8-10d			
Defends and the base of the second test and test and test and test and test of all second s								

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/4" to 9' 6 1/2"	N/A	10.0		
1 - Uniform (PSF)	0 to 9' 10" (Top)	4' 6"	35.0	60.0	DECK LANDING PLUS LOWER RUN STRINGERS

Member Notes

LANDING AT LOWER RUN

ForteWEB Software Operator Kathryn Warner Harriott Valentine Engineers (206) 624-4760 kwarner@harriottvalentine.com Job Notes

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by K.Warner

ForteWEB Software Operator Kathryn Warner Harriott Valentine Engineers (206) 624-4760 kwarner@harriottvalentine.com Job Notes

12/11/2020 2:57:22 AM UTC ForteWEB v3.1, Engine: V8.1.5.1, Data: V8.0.1.0 File Name: Vanderwall Page 25 / 30

Level-Deck, Floor: Drop Beam-DL1-ledger span openings 1 piece(s) 3 1/2" x 9 1/4" 2.0E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3230 @ 3"	3281 (1.50")	Passed (98%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2645 @ 1' 1/4"	6259	Passed (42%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	6865 @ 4' 6"	12416	Passed (55%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.129 @ 4' 6"	0.283	Passed (L/791)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.218 @ 4' 6"	0.425	Passed (L/468)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (Ibs)			
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Hanger on 9 1/4" HF beam	3.00"	Hanger ¹	1.50"	1393	2025	3418	See note 1
2 - Hanger on 9 1/4" HF beam	3.00"	Hanger ¹	1.50"	1393	2025	3418	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	8' 6" o/c					
Bottom Edge (Lu)	8' 6" o/c					
Maximum allowable has size intervals because any indication						

Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
1 - Face Mount Hanger	HUCQ410-SDS	3.00"	N/A	12-SDS25212	6-SDS25212			
2 - Face Mount Hanger	HUCQ410-SDS	3.00"	N/A	12-SDS25212	6-SDS25212			

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	3" to 8' 9"	N/A	10.1		
1 - Uniform (PSF)	0 to 9' (Front)	7' 6"	40.0	60.0	New Deck Loading- overframe additional interior floor adjacent to ledger

Member Notes

ledger taking all new deck loading

ForteWEB Software Operator Kathryn Warner Harriott Valentine Engineers (206) 624-4760

kwarner@harriottvalentine.com

Job Notes

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by K.Warner

ForteWEB Software Operator Kathryn Warner Harriott Valentine Engineers (206) 624-4760 kwarner@harriottvalentine.com Job Notes

12/11/2020 2:57:22 AM UTC ForteWEB v3.1, Engine: V8.1.5.1, Data: V8.0.1.0 File Name: Vanderwall Page 27 / 30

MEMBER REPORT

LDF

1.00

1.00

--

Load: Combination (Pattern)

1.0 D + 1.0 L (All Spans)

1.0 D + 1.0 L (All Spans)

1.0 D + 1.0 L (All Spans)

1.0 D + 1.0 L (All Spans) 1.0 D + 1.0 L (All Spans) System : Floor Member Type : Drop Beam Building Use : Residential

Building Code : IBC 2015 Design Methodology : ASD

 Total Load Defl. (in)
 0.37

 • Deflection criteria: LL (L/360) and TL (L/240).

Design Results

Shear (lbs)

Moment (Ft-lbs)

Live Load Defl. (in)

Member Reaction (lbs)

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads t	o Supports		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Hanger on 7 1/4" PSL beam	3.00"	Hanger ¹	1.50"	1021	1485	2506	See note 1
2 - Hanger on 7 1/4" PSL beam	3.00"	Hanger ¹	1.50"	1021	1485	2506	See note 1

Allowed

3938 (1.50")

4821

7115

0.283

0.425

Result

Passed (60%)

Passed (42%)

Passed (71%)

Passed (L/543)

Passed (L/321)

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Actual @ Location

2369 @ 3"

2032 @ 10 1/4"

5034 @ 4' 6"

0.188 @ 4' 6"

0.317 @ 4' 6"

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	8' 6" o/c						
Bottom Edge (Lu)	8' 6" o/c						
Manifester allowable beaution intervals beaution and in and							

Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie									
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
1 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A				
2 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A				
		e 11 .							

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	3" to 8' 9"	N/A	7.4		
1 - Uniform (PSF)	0 to 9' (Front)	5' 6"	40.0	60.0	New Deck Loading- sistered under existing floor - no loading adjacent to ledger

Member Notes

ledger taking all new deck loading

ForteWEB Software Operator Kathryn Warner Harriott Valentine Engineers (206) 624-4760

kwarner@harriottvalentine.com

Job Notes

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by K.Warner

ForteWEB Software Operator Kathryn Warner Harriott Valentine Engineers (206) 624-4760 kwarner@harriottvalentine.com Job Notes

12/11/2020 2:57:22 AM UTC ForteWEB v3.1, Engine: V8.1.5.1, Data: V8.0.1.0 File Name: Vanderwall Page 29 / 30

MEMBER REPORT

Level-Deck, Floor: Drop Beam-REPLACE Hdrs 1 piece(s) 3 1/2" x 9 1/4" 2.0E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4726 @ 1 1/2"	6563 (3.00")	Passed (72%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3591 @ 1' 1/4"	6259	Passed (57%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	9462 @ 4' 3"	12416	Passed (76%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.166 @ 4' 3"	0.275	Passed (L/595)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.285 @ 4' 3"	0.412	Passed (L/348)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Trimmer - HF	3.00"	3.00"	2.16"	1964	2763	850	5577	None
2 - Trimmer - HF	3.00"	3.00"	2.16"	1964	2763	850	5577	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 6" o/c	
Bottom Edge (Lu)	8' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 6"	N/A	10.1			
1 - Uniform (PSF)	0 to 8' 6" (Front)	8'	14.0	-	25.0	ROOF BEARING WALL
2 - Uniform (PSF)	0 to 8' 6" (Front)	8'	15.0	40.0	-	Existing Cantilevered floor loading
3 - Uniform (PSF)	0 to 8' 6" (Front)	5' 6"	40.0	60.0	-	ADD NEW DECKING -Sistered with existing cantilevers

Member Notes

Existing load only - no deck loading

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by K.Warner

ForteWEB Software Operator	Job Notes
Kathryn Warner Harriott Valentine Engineers (206) 624-4760 kwarner@harriottvalentine.com	

12/11/2020 2:57:22 AM UTC ForteWEB v3.1, Engine: V8.1.5.1, Data: V8.0.1.0 File Name: Vanderwall Page 30 / 30

LIVING ROOM LOAD 'B' = ROOF + FLR CORNER EX PUST -> (DEMU) BASEMENT NEW COLVER POST EX. BM -> JOIST SPAN N/S (ASSUMED RIDGE POSP ? 'A (TNOPTH NW CORNER SWI CORNER - OPPOSITE LOAD & From ROOF - 65\$ TEIB XISPSFOL + 25 PSFLL CRIDGE BM = 975# b + 1625# SN = 2400 TOT. POST-1/2) DAD B FROM ROOF - 351 WONDRHANGS XISPOFD+256N (CORNER) = 5254 D + 8754 Sn B FROM FIR = 2010 (ZOPSFID + 40PSF LL) = 400 # b + 800 # L => TOTAL 'B'= 925" D + 1675" LL+Sn 1) HANGER FLR BEAM @ NOUTH SIDES Rmax = Z600 => HUCA 1932 First Avenue, Suite 720 VANDERWALE

Seattle, Washington 98101-2447 tel. 206 624 4760 | fax 447 6971

COMBINED STRESSES - WOOD

P =	5200 lb			New Post-gravity only	
b =	5.50 in			6x6-DF#1	
d =	5.50 in				
A =	30.25 in2	fc =	172 psi		
le =	<mark>84</mark> in				
d =	5.50 in				
c' =	0.8				
Kce =	0.822				
Emin' =	5.8E+05 psi				
Fce =	2044 psi			Fce=0.822*Emin/(le/d)^2	
Fc* =	1000 psi	F'c =	871 psi	F'c=Fc*Cp	
size, Cf =	1.0; duration, Cd =	= 1.0			

M =	27,300 lb-in								
b =	5.50 in	fb =	985 psi	(fc / F'c)^	2 + (1	fb/(Fb(1-(fo	c/Fce))) < 1.(00
d =	5.50 in								
S =	27.73 in3	F'b =	1200 psi	0.039	+	0.896	=	0.935	o.k.

size, Cf = 1.0 duration, Cd = 1.0

NEW POST / EX. BEAM CONN. C LIVING ROOM V B - OUTSIDE = 2600# TOTAL P= 5200# RC M= 5200 ×5125 = 27300 # 1N XX 51/2" 7057 Gra DF#1 - see attached 1 BEARING PLATE - 3/4" & x B - MUNOR AXUS Zu= (15)2. B/4 = / Mp152 = Zq.36 Kasi /1,67 : Bmin = Mr. 1.67. 4/36 (.52) = 27.3 KIN (1.07)(4) / 36 (.75)2 = 9.00 W STRAPS TO POST / RESOLVE M RT = 27300 # 11 515 = 4964 SDS SCREWS w/ 1/4" SIDE PLATE 721 = 420# -> MN SCREWS = 11.3 -> VSE(12) 1932 First Avenue, Suite 720 VANDER WALL

Seattle, Washington 98101-2447 tel. 206 624 4760 | fax 447 6971

.

SECTION 3: LATERAL

1932 First Avenue, Suite 720 Seattle, Washington 98101-2447 tel. 206-624-4760 | fax 447-6971

CRITERIA

LATERAL

wind	wind importance factor basic wind speed wind exposure topographical factor (Kzt)	1.0 110 mpl C per 1.00 per	n Mercer Island Wind Map Mercer Island Wind Map
seismic	seismic importance factor latitude longitude accel. at short periods (Ss) accel. at 1-sec period (S1)	1.0 47.539 ° -122.243 ° 1.472 g 0.563 g	(from SEAOC Design Tool)
	seismic design category response modification factor (R)	D 6.5	

SEISMIC DESIGN - Exist House

ASCE 7-10

Equivalent Lateral Force Procedure

Occupancy Category	II	Table 1-1
Seismic Design Category	D	Table 11.6-1
Importance Factor	1.00	Table 11.5-1
Site Class	D	Table 20.3-1
Ss	147.20 %g	(from USGS Seismic Hazard Curves, 2008 data)
S1	<mark>56.30</mark> %g	(from USGS Seismic Hazard Curves, 2008 data)
Fa	1.00	Table 11.4-1
Fv	1.50	Table 11.4-2
Ct	0.02	Table 12.8-2
х	0.75	Table 12.8-2
hn	20.00 feet	(height to highest level)
Sмs = Fa*Ss	1.4720	Eq. 11.4-1
Sм1 = Fv*S1	0.8445	Eq. 11.4-2
SDS = (2/3)*SMS	0.9813 g	Eq. 11.4-3
SD1 = (2/3)*SM1	0.5630 g	Eq. 11.4-4
Period Ta = Ct*hn^x	0.1891 s	Eq. 12.8-7
То	0.1147 s	per section 11.4.5
Ts	0.5737 s	per section 11.4.5
Sa	0.9813 g	per section 11.4.5
D	6.5	Table 12.2.1
	0.5	
<u>1</u> 20	2.0	
	4	
Section 12.8 (ELFP) ok?	Yes	l able 12.6-1

Equivalent Lateral Force Procedure (section 12.8)

Cs	0.1510	Eq. 12.8-2
W, weight	79,840 lb	per table below
Q _E	12,054 lb	Eq. 12.8-1

Vertical Force Distribution (section 12.8.3)

k = 1.00

		Floor	Seismic	Floor	Wall	Wall	Total			(LRFD)	(ASD)
Level	Hx	Area	Dead Ld	Wt.	Length	Wt.	Wt.	WxHx	Cvx	Q_E	$0.7Q_{E}$
	(ft)	(ft2)	(psf)	(k)	(ft)	(k)	(k)	(k-ft)	(%)	(k)	(k)
Roof (MRH)	18.00	1586	14	22.2	202	8.1	30.3	545.1	61.3	7.38	5.17
Main Floor	8.00	1586	18	28.5	202	14.5	43.1	344.7	38.7	4.67	3.27
Basement Floor	0.00	1586	0	0.0	202	6.5	6.5	0.0	0.0	0.00	0.00
							79.84	889.85	100.00	12.05	8.44

SEISMIC DESIGN - Kitchen Deck

ASCE 7-10

Equivalent Lateral Force Procedure

II	Table 1-1
D	Table 11.6-1
1.00	Table 11.5-1
D	Table 20.3-1
147.20 %g	(from USGS Seismic Hazard Curves, 2008 data)
56.30 %g	(from USGS Seismic Hazard Curves, 2008 data)
1.00	Table 11.4-1
1.50	Table 11.4-2
0.02	Table 12.8-2
0.75	Table 12.8-2
20.00 feet	(height to highest level)
1.4720	Ea. 11.4-1
0.8445	Eg. 11.4-2
0.9813 g	Eq. 11.4-3
0.5630 g	Eq. 11.4-4
0.1891 s	Eq. 12.8-7
0.1147 s	per section 11.4.5
0.5737 s	per section 11.4.5
0.9813 g	per section 11.4.5
6.5	Table 12.2-1
2.5	Table 12.2-1
4	Table 12.2-1
Yes	Table 12.6-1
	II D 1.00 D 147.20 %g 56.30 %g 1.00 1.50 0.02 0.75 20.00 feet 1.4720 0.8445 0.9813 g 0.5630 g 0.1891 s 0.1147 s 0.5737 s 0.9813 g 6.5 2.5 4 Yes

Equivalent Lateral Force Procedure (section 12.8)

Cs	0.1510	Eq. 12.8-2
W, weight	18,600 lb	per table below
Q _E	2,808 lb	Eq. 12.8-1

Vertical Force Distribution (section 12.8.3)

k = 1.00

		Floor	Seismic	Floor	Wall	Wall	Total			(LRFD)	(ASD)
Level	Hx	Area	Dead Ld	Wt.	Length	Wt.	Wt.	WxHx	Cvx	Q_E	$0.7Q_{E}$
	(ft)	(ft2)	(psf)	(k)	(ft)	(k)	(k)	(k-ft)	(%)	(k)	(k)
Roof (MRH)	18.00	0	0	0.0	0	0.0	0.0	0.0	0.0	0.00	0.00
Deck 1	8.00	465	40	18.6	0	0.0	18.6	148.8	100.0	2.81	1.97
Basement Floor	0.00	0	0	0.0	0	0.0	0.0	0.0	0.0	0.00	0.00
							18.60	148.80	100.00	2.81	1.97

SEISMIC DESIGN - Master Deck

ASCE 7-10

Equivalent Lateral Force Procedure

Occupancy Category	II	Table 1-1
Seismic Design Category	D	Table 11.6-1
Importance Factor	1.00	Table 11.5-1
Site Class	D	Table 20.3-1
Ss	147.20 %g	(from USGS Seismic Hazard Curves, 2008 data)
S1	56.30 %g	(from USGS Seismic Hazard Curves, 2008 data)
Fa	1.00	Table 11.4-1
Fv	1.50	Table 11.4-2
Ct	0.02	Table 12.8-2
х	0.75	Table 12.8-2
hn	20.00 feet	(height to highest level)
Sмs = Fa*Ss	1.4720	Eq. 11.4-1
Sм1 = Fv*S1	0.8445	Eq. 11.4-2
Sds = (2/3)*Sms	0.9813 g	Eq. 11.4-3
SD1 = (2/3)*Sм1	0.5630 g	Eq. 11.4-4
Period Ta = Ct*hn^x	0.1891 s	Eq. 12.8-7
То	0.1147 s	per section 11.4.5
Ts	0.5737 s	per section 11.4.5
Sa	0.9813 g	per section 11.4.5
R	6.5	Table 12.2-1
Ωο	2.5	Table 12.2-1
Cd	4	Table 12.2-1
Section 12.8 (ELFP) ok?	Yes	Table 12.6-1

Equivalent Lateral Force Procedure (section 12.8)

Cs	0.1510	Eq. 12.8-2
W, weight	5,600 lb	per table below
Q _E	845 lb	Eq. 12.8-1

Vertical Force Distribution (section 12.8.3)

k = 1.00

		Floor	Seismic	Floor	Wall	Wall	Total			(LRFD)	(ASD)
Level	Hx	Area	Dead Ld	Wt.	Length	Wt.	Wt.	WxHx	Cvx	Q_E	$0.7Q_{E}$
	(ft)	(ft2)	(psf)	(k)	(ft)	(k)	(k)	(k-ft)	(%)	(k)	(k)
Roof (MRH)	18.00	0	0	0.0	0	0.0	0.0	0.0	0.0	0.00	0.00
Deck 2	8.00	140	40	5.6	0	0.0	5.6	44.8	100.0	0.85	0.59
Basement Floor	0.00	0	0	0.0	0	0.0	0.0	0.0	0.0	0.00	0.00
							5.60	44.80	100.00	0.85	0.59

WIND DESIGN

ASCE 7-10 Simplified Envelope Method (Chapter 28)

ps = λ Kzt I ps30

Part of Figure 28.6-1 - Adjustment Facto
for Building Height and Exposure, λ

Mean Roof Height	Exposure				
(ft)	В	С	D		
15	1.00	1.21	1.47		
16	1.00	1.23	1.49		
17	1.00	1.24	1.50		
18	1.00	1.26	1.52		
19	1.00	1.27	1.53		
20	1.00	1.29	1.55		
21	1.00	1.30	1.56		
22	1.00	1.31	1.57		
23	1.00	1.33	1.59		
24	1.00	1.34	1.60		
25	1.00	1.35	1.61		
26	1.00	1.36	1.62		
27	1.00	1.37	1.63		
28	1.00	1.38	1.64		
29	1.00	1.39	1.65		
30	1.00	1.40	1.66		

λ = adjustment factor =	1.29
I = importance factor =	1.00

	1.00
Kzt = topographic factor =	1.00

Zone Computation

a = 10% of least horizontal dimension or 0.4 x h, whichever is smaller, but not less than either 4% of least horizontal dimension or 3 feet.

w =	37.00 ft x 0.1 =	3.70 ft
h =	20.00 ft x 0.4 =	8.00 ft
w =	37.00 ft x 0.04 =	= 1.48 ft
a =	3.70 ft	
2a =	7.40 ft	
Zone B Zone A	- end zone of roof - end zone of wall	
Zone D Zone C	 interior zone of ro interior zone of was 	of all

Part of Figure 28.6-1 - Method 2 Design Wind Pressure, ps30

Basic	Roof	Roof	Horiz	Horizontal Pressures (psf)			
Speed	Angle	Pitch	А	В	С	D	
	0 to 5	flat	19.2	-10.0	12.7	-5.9	
	10	2	21.6	-9.0	14.4	-5.2	
110	15	3	24.1	-8.0	16.0	-4.6	
	20	4	26.6	-7.0	17.7	-3.9	
	25	6	24.1	3.9	17.4	4.0	
	30 to 45	7 to 12	21.6	14.8	17.2	11.8	

Design Wind Pressure, ps

Basic	Roof	Roof	Horiz	zontal Pre	ssures (p	sf)	
Speed	Angle	Pitch	А	В	С	D	
	0 to 5	flat	24.8	-12.9	16.4	-7.6	
	10	2	27.9	-11.6	18.6	-6.7	
110	15	3	31.1	-10.3	20.6	-5.9	
	20	4	34.3	-9.0	22.8	-5.0	<<< 22degrees, LRFD
	25	6	31.1	5.0	22.4	5.2	
	30 to 45	7 to 12	27.9	19.1	22.2	15.2]

A SSUMED EXIST TRIB, PATH TO EXTERIOR / PELIMETER WALLS

VANDERWALL

$$\frac{|W|ND}{C} = 20NE A = 34.3 \times 0.60 = 20.6 \text{ pf} (ASD) \\ C = 22.3 \times 0.6 = 13.7 \text{ pif} (ASD) \\ a = 3.7 \text{ pi} - 4 \text{ pf} \\ NOTE = NEWLOT ROOF 20NES 4.55 \\ TEND TO ROOF h = [0.000 (F16.23.6-1)) \\ VEDT/WEST - 37/2 = 12.5' TOTAL TEND \\ V NOTH/SOUTH = 66/2 = 33' TOTAL TEND \\ V NOTH/SOUTH = 66/2 = 33' TOTAL TEND \\ [EAST /WEST WALLS] \\ [(B'=2a) > 5' > 21/AF] + [(DIS'= balance) > 5' > 14PSF] = 1575^4 \\ = 1.6^{4} \\ CSEISTNIC V_{14} = 2.6^{6} \\ NO2TH (SOUTH WALLS) \\ [(B'=2a) > 5' > 21/AF] + [(2S'=balance) > 5' > 14] > 2530^{4} \\ CSEISTNIC = 2.5.35^{4} \\ USE SEISTNIC = 2.5.35^{4} \\ USE SEIST$$

tel. 206 624 4760 | fax 447 6971

LIPPER WALLS (WEST) NEW FRAMING AT LI = 3'10 1 L2 = 4'-8"; L3 = 2'-6" (MIN PIER) h= 3' 2L/h = 2(25)/8=0.625 N west wall = 2585 / [L= 11' = 235 plf USE SW 3 (HE cap) - Non= ASS plf × 0.625 = 284 plf check p=1.0 max PIER = 4.67 × 235 plf = 1097* V story = 5170 × 33 = 1706 > max per 2. meets Table 12,3.3 (221,0 T/c gross N/ 2357 8 = 1880 HOLDOWA C Wall ends Bearing walls - min DL C Jamb 1 TRIB × 10'span trib × SpsF = 150" That = 1280 - . 6 (150) = 1790 = =7 CSH STRAP or (2) cs 20 = 2060 1932 First Avenue, Suite 720 LANDERWALL Seattle, Washington 98101-2447 tel. 206 624 4760 | fax 447 6971

Pane of

VANDERWALL

TO MAIN FUR DIAPH. AT FRAMING REVISIONS WEINDO NORTH / SOUTH CONC FON - NO CHANG WALL D = 25 USE ZONE C FOR INTERIOR ZONE TRIB WALL E =16 TRIB DITO TRIB TO WALLS A, B&C = 6 USE ZONE A (20= 2) TRIB HT = 1/2 (3'+ 2' FUR HTS) = &' (conserv, actual 4) VWIND WEST WALLS ABJE = 8 × 20,6 psf × 6 = 990 (ASO) + 1575# 1200F = 25/25# (SEE FOLLOWING FOR SEISMIC) LINE D = 25 × 13.7pof × 25 = 2740 (ASD) VWIND + & ROOF E = 8 x 13,7 × 16 = 1754 (ASD) Y WIND LINK + O ROOF VESSEISMIC LINES DEFE VE LINE D = 25 +RIB/65 OVERALL + (3270" V STORY) = 1258" ASD + DECK 1 TRIB = 328x =1586 (WIND NE LINE E = 16 TRIB / 65 × 3270 = 805# + DECK 2 TRIB = 295 = 1100 LWIND CD Nmax = 2740 /3.17 = 864 plf (WIND) - Wile SW4 (see fullowing) T/C gross = 864,7,5 = 6483# 1932 First Avenue, Suite 720 VANDERWALL

Seattle, Washington 98101-2447 tel. 206 624 4760 | fax 447 6971

VWIND WALLS A, B & C
$$\rightarrow \Sigma = 2565^{\circ}$$
.
A.192 + 2.75 + 2.25' $\rightarrow ND = 272 \text{ plf}$
V DEISNIC - ROOF + MININ TELS
 $= 258^{\circ} + 812^{\circ} = 3403^{\circ}$
Monain house only = $3403/442+275.225^{\circ}$ 361 plf
 $\rightarrow \text{Add} \text{ dads}$
Walls A + B + ($\pm \text{eck} 1 = 1975^{\circ}/2$)
 $= 925^{\circ}$
Noexli = $985/(442+275) = 137 \text{ plf}$
 $\therefore \Sigma (V_{A,78} = 408.7 \text{ plf})$
 $\therefore NZ = 498 \text{ plf}$
Sun cedudion · $2'\text{Lmin}/h = \frac{1}{2}(215)/75^{\circ} = 0.6$
 $Neap regist = 498/.6 = 830$
 $\Rightarrow \text{SINGLE SIDE (OUTRIDE FACE)}$
 $1^{\circ}/32^{\circ} w/ 102 C 2'^{\circ} = 7 \text{ Table } 2.34 - 50.4$
Setsmic Naus $1740^{\circ}/2.22 = 870 \text{ plf}$
 $1^{\circ}/32^{\circ} w/ 102 C 2'^{\circ} = 7 \text{ Table } 2.34 - 50.4$
Setsmic Naus $1740^{\circ}/2.22 = 870 \text{ plf}$
 $Wand C + 2435^{\circ}/2 = 7 \text{ Table } 2.34 - 50.4$
 $Neap regist = 498 \text{ plf}$
 $1^{\circ}/32^{\circ} w/ 102 C 2'^{\circ} = 7 \text{ Table } 2.34 - 50.4$
 $Setsmic Naus $1740^{\circ}/2.22 = 870 \text{ plf}$
 $Wand C = 2435^{\circ}/2 = 7.55^{\circ}/2 = 7.35^{\circ}$$

Seattle, Washington 98101-2447 tel. 206 624 4760 | fax 447 6971

HOLDOWN REMEDIATION EXTERIOR FACE TO STEM EV (SEISMIE CONTRALED) = 3735# /.7 = 5336# DL RESIST = 8 TRIPS X 15 PSF x (15 24/2) = 180" Tu= 5336-.9(180)= 5174# EPOXY 1/2 0 - (3) TOTAL) W/ (WIND CONTROLLED) = 6483 /.6= 10805 DL RESIST = 18' TRIB * (3'waichtam) × 30 psF = 1620 (2story) +1-12 Robert FUR Tu= 10805- 911620# = 9347 EPOXY 1/2" \$ (8) TOTAL NOTE 101% CLOSE ENOUGH The SDS SCROWS to WALL STUDS Z (= 2x STUDS) = 250# (DF) x 1.6= 400 /SCREW Taross max = 6423 /400 = 16.2 -7 18 min SUREWS 1932 First Avenue, Suite 720 VANDERWALL Seattle, Washington 98101-2447 tel. 206 624 4760 | fax 447 6971

LOADS TO POST & PILES

DECK POSTS MAX FP/POST = 1970 /3 = 657 CS mAx MAX AXIAL = D = 4785# } = 11420# D+L M 75 = 657 × 8' = 5256 FT# Pine = 0.2501 × DL = ,2(.98) × 4785#= + 977# 410% D+L HSS 31/2×31/2×14 Mp/2 = 8.03KF Pn/2 = 56K COMBINED 313K/8KF + 12K/56K = 0.84 41.01 EI= 29×10 pi x 51 + = 145×10 m2.16 A= PQ3/3EI= 65t × (8x12) / 8(145×10) = ... = 1.34 ... Save = .02H = .02(96") = 1.92 - NO GOOD For Co = 4 -7 HSS 5×5×14 I= 16,14 D= 657+96113/3(29×100)(16) = 0.421 S= CD = 4 x 42 = NG7 21.94 = O2HV Use HSS 5+5 × 1/4 ANCHURAGE TO FTG 1.0E Mu = 5256 / 7 = 7508 FTH Vn= 657/.7= 940# 1932 First Avenue, Suite 720 VANDERWALL

1932 First Avenue, Suite 720 Seattle, Washington 98101-2447 tel. 206 624 4760 | fax 447 6971

SECTION 4: FOUNDATION

FOOTING WITH COMBINED AXIAL AND FLEXURAL LOADS

MAX DECK POST MOMENT Sizes and Loads:

superstructure:

frame	0 lb- neglect a	any dead load
footing:		
length	5.00 ft	(alo

length	5.00 ft	(along same axis as applied moment)
width	5.00 ft	(perpendicular to applied moment)
depth	1.00 ft	
weight	3,625 lb	
soil abv.	1,500 lb	
total R =	5,125 lb	
M =	5,256 lbft	
e =	1.03 ft	
B/6 =	0.83 ft	

Bearing Pressures:

(Use these results)		(Do not us	(Do not use these results)				
x =	1.47 ft	fa = fb =	205 psf 252 psf				
fp =	463 psf	fp =	457 psf				
Fa =	1,200 psf	Fa =	1,200 psf	EQUIV FOR ONE PILE /5-SQFT			

Stability:

Mot =	5,256 lbft	(using 0.7E)
Mr =	7,688 lbft	(using 0.6D, per ASD Load Combinations)

SIMPSON

Strong-1

Anchor Designer™ Software Version 2.9.7376.0

Company:		Date:	1/4/2021
Engineer:	K.Warner	Page:	1/5
Project:	Moment Post anchors		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General Design method:ACI 318-11 Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place Material: F1554 Grade 36 Diameter (inch): 0.750 Effective Embedment depth, h_{ef} (inch): 8.000 Anchor category: -Anchor ductility: Yes h_{min} (inch): 9.50 C_{min} (inch): 1.22 S_{min} (inch): 3.00

Recommended Anchor

Anchor Name: Heavy Hex Bolt - 3/4"Ø Heavy Hex Bolt, F1554 Gr. 36

Project description: Location: Fastening description:

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 12.00 State: Cracked Compressive strength, f'c (psi): 2500 $\Psi_{c,V}$: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: Yes Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 11.00 x 11.00 x 0.50

SIMPSON

Strong-Tie

Anchor Designer™ Software Version 2.9.7376.0

Company:		Date:	1/4/2021
Engineer:	K.Warner	Page:	2/5
Project:	Moment Post anchors	-	
Address:			
Phone:			
E-mail:			

Load and Geometry Load factor source: ACI 318 Section 9.2 Load combination: not set Seismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: D.3.3.4.3 (c) is satisfied Ductility section for shear: D.3.3.5.3 (b) is satisfied Ω_0 factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

Strength level loads:

N_{ua} [lb]: 0 V_{uax} [lb]: 940 V_{uay} [lb]: 0 M_{ux} [ft-lb]: 0 M_{uy} [ft-lb]: 0 Muz [ft-lb]: 7510

<Figure 1>

Anchor Designer™ Software Version 2.9.7376.0

Company:		Date:	1/4/2021
Engineer:	K.Warner	Page:	3/5
Project:	Moment Post anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>

	Company:		Date:	1/4/2021
Anchor Designer	Engineer:	K.Warner	Page:	4/5
Tie Software	Project:	Moment Post anchors	•	
Version 2.9.7376.0	Address:			
9	Phone:			
	E-mail:			

3. Resulting Anchor Forces

1000

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2 + (V_{uay})^2}$ (lb)
1	0.0	3051.2	-2816.2	4152.1
2	0.0	-2581.2	-2816.2	3820.1
3	0.0	-2581.2	2816.2	3820.1
4	0.0	3051.2	2816.2	4152.1
Sum	0.0	940.0	0.0	15944.5

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 0

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

φ

0.70

48562

 ϕV_{cbgy} (lb)

16561

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V _{sa} (lb)	$\phi_{ ext{grout}}$	ϕ	$\phi_{grout} \phi V_{sa}$ (lb)
11625	1.0	0.65	7556

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2) Shear perpendicular to edge in y-direction:

1.000

$V_{by} = \min[7(x)]$	$I_e/d_a)^{0.2}\sqrt{d_a\lambda_a}\sqrt{f^2}$	c c a1 ^{1.5} ; 9λa√ f 'c	c _{a1} 1.5 (Eq. D-33 &	& Eq. D-34)		
I _e (in)	d _a (in)	λa	f'c (psi)	<i>C</i> a1 (in)	V _{by} (lb)	
6.00	0.750	1.00	2500	22.67	48562	
<i>φV_{cbgy}</i> = <i>φ</i> (<i>A_{Vc}</i> / <i>A_{Vco}</i>) <i>Ψ_{ec,V} Ψ_{ed,V} Ψ_{c,V} Ψ_{h,V}V_{by}</i> (Sec. D.4.1 & Eq. D-31)						
Avc (in ²)	Avco (in²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)

0.929

Shear perpendicular to edge in x-direction:

2312.00

720.00

$V_{bx} = \min[7(h)]$	le∕da) ^{0.2} √daλa√f	"c C a1 ^{1.5} ; 9λa√ f "c (Ca1 ^{1.5} (Eq. D-33 &	& Eq. D-34)				
Ie (in)	da (in)	λa	f'c (psi)	<i>c</i> a1 (in)	V _{bx} (lb)			
6.00	0.750	1.00	2500	22.67	48562			
$\phi V_{cbgx} = \phi (A$	vc / Avco) Vec, v V	$\mathcal{W}_{ed,V} \mathcal{\Psi}_{c,V} \mathcal{\Psi}_{h,V} \mathcal{V}_{bx}$	(Sec. D.4.1 & Ec	ą. D-31)				
A_{Vc} (in ²)	Avco (in²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	Ψc,v	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
720.00	2312.00	1.000	0.929	1.000	1.683	48562	0.70	16561

1.683

1.000

Shear parallel to edge in x-direction:

 $V_{by} = \min[7(I_e/d_a)^{0.2} \sqrt{d_a \lambda_a} \sqrt{f_c} c_{a1}^{1.5}; \ 9\lambda_a \sqrt{f_c} c_{a1}^{1.5}] \ (\text{Eq. D-33 \& Eq. D-34})$

SIMP	SON And	hor Desi	an⊖r™	Compa	any:				Date:	1/4/2021
			grier	Engine	er: K.V	Varner			Page:	5/5
Strong	p-Tie Son	ware		Project	t: Mo	ment Post	anchors		-	
	Versi	on 2.9.7376.0)	Addres	ss:					
	Ũ			Phone	:					
				E-mail:						
<i>I</i> ℯ (in)	<i>d</i> ₄ (in)	λa	f′c (psi)	Ca1 (in)	V _{by} (lb)				
6.00	0.750	1.00	2500	17.33	3247	74	_			
$\phi V_{cbgx} = \phi (I$	2)(A _{Vc} / A _{Vco}) Ψ _{ec}	, v Ψed, v Ψc, v Ψh,	VVby (Sec. D.4.1	& Eq. D-31)						
A_{Vc} (in ²)	A _{Vco} (in ²)	₩ec.V	Ψed V	Ψ _{c.V}	$\Psi_{h,V}$		V _{by} (lb)	φ		<i>φ</i> V _{cbax} (lb)
720.00	1352.00	1.000	1.000	1.000	1.47	2	32474	0.70		35638
Shear para	allel to edge in	v-direction:								
$V_{by} = \min[7]$	$(l_{e}/d_{e})^{0.2}\sqrt{d_{e}}$	f' Cal ^{1.5.} 92 14	″1 ^{1.5} I (Eq. D_3	3 & Fa D-34)						
l_{e} (in)	d_{a} (in)	1. J.	f's (nei)	C_{a4} (in)	VI.	lh)				
		Λa 1.00	2500		204	74	_			
0.00	0.750	1.00	2500		524	4				
$\phi V_{cbgy} = \phi (1)$	2)(Avc / Avco) Ψec	c, V $arPhi$ ed, V $arPhi$ c, V $arPh$,	VV _{bx} (Sec. D.4.1	& Eq. D-31)						
A _{Vc} (In ²)	A _{Vco} (In ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$		V _{bx} (Ib)	ϕ		ϕV_{cbgy} (lb)
720.00	1352.00	1.000	1.000	1.000	1.47	2	32474	0.70		35638
$\frac{10. \text{ Concre}}{\phi V_{cp} = \phi K_{cp}}$	$ete Pryout StreeN_{cb} = \phi k_{cp} (A_{Nc} / A_{Nc})$	ength of Anc $A_{Nco}) \Psi_{ed,N} \Psi_{c,N}$ $A_{Nco} (in^2)$	hor in Shear (Ψ _{cp,N} N _b (Sec. D. Ψ _{od N}	Sec. D.6.3) 4.1 & Eq. D-40) War N	N₀ (lb)	þ		¢Var (lb)	
20	256.00	576.00	1 000	1,000	1 000	27153	φ 0.70		<i>争を命(</i> に) 16895	
2.0	230.00	570.00	1.000	1.000	1.000	27100	0.70		10035	
11. Results	<u>s</u> tion of Tensile	and Shear	Forces (Sec. D	<u>).7)?</u>						
Shear		Factored Lo	oad, V _{ua} (Ib)	Design Stren	gth, øV _n (lb)	Ratio			Status	
Steel		4152		7556		0.55			Pass (G	ioverns)
T Concret	te breakout y+	5632		16561		0.34			Pass	-
T Concret	te breakout x+	6102		16561		0.37			Pass	
Concret	e breakout y-	6102		35638		0.17			Pass	
Concret	e breakout x-	5632		35638		0.16			Pass	
Concrete combined	breakout,	-		-		0.50			Pass	

3/4"Ø Heavy Hex Bolt, F1554 Gr. 36 with hef = 8.000 inch meets the selected design criteria.

12. Warnings

Pryout

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections D.8.1 and D.8.2 for torqued cast-in-place anchor is waived per designer option.

0.25

Pass

- Per designer input, ductility requirements for tension have been determined to be satisfied - designer to verify.

16895

- Per designer input, ductility requirements for shear have been determined to be satisfied - designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

4152

SIMPSON

Strong-1

Anchor Designer™ Software

Version 2.9.7376.0

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Strap Holdown- Walls A, B, C

2. Input Data & Anchor Parameters

General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor Material: F1554 Grade 36 Diameter (inch): 0.500 Effective Embedment depth, h_{ef} (inch): 4.000 Code report: IAPMO UES ER-263 Anchor category: -Anchor ductility: Yes hmin (inch): 5.25 c_{ac} (inch): 9.16 C_{min} (inch): 1.75 Smin (inch): 3.00

Recommended Anchor

Anchor Name: AT-XP \mbox{w} - AT-XP $\mbox{w}/$ 1/2"Ø F1554 Gr. 36 Code Report: IAPMO UES ER-263

Company:	HVE	Date:	11/20/2017			
Engineer:	k.warner	Page:	1/5			
Project:						
Address:	1932 1st Ave, Suite 720, Seattle, V	1932 1st Ave, Suite 720, Seattle, WA				
Phone:						
E-mail:						

Project description: Exist 6" stem wall-midwall Location: Washington Fastening description: Seismic Anchors-retrofit

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 6.00 State: Cracked Compressive strength, f_{\circ} (psi): 2500 $\Psi_{\circ,\vee}$: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Hole condition: Dry concrete Inspection: Continuous Temperature range, Short/Long: 150/110°F Ignore 6do requirement: Not applicable Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 3.00 x 9.50 x 0.25

SIMPSON

Strong-Tie

Anchor Designer™ Software Version 2.9.7376.0

Company:	HVE	Date:	11/20/2017		
Engineer:	k.warner	Page:	2/5		
Project:					
Address:	1932 1st Ave, Suite 720, Seattle, WA				
Phone:					
E-mail:					

Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: not set Seismic design: Yes Anchors subjected to sustained tension: No Ductility section for tension: 17.2.3.4.2 not applicable Ductility section for shear: 17.2.3.5.3 (b) is satisfied Ω_0 factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

Strength level loads:

 $\begin{array}{l} N_{ua} \ [lb]: \ 0 \\ V_{uax} \ [lb]: \ 0 \\ V_{uay} \ [lb]: \ 5200 \\ M_{ux} \ [ft-lb]: \ 0 \\ M_{uy} \ [ft-lb]: \ 0 \\ M_{uz} \ [ft-lb]: \ 0 \end{array}$

Anchor Designer™ Software Version 2.9.7376.0

Company:	HVE	Date:	11/20/2017	
Engineer:	k.warner	Page:	3/5	
Project:				
Address:	1932 1st Ave, Suite 720, Seattle, WA			
Phone:				
E-mail:				

<Figure 2>

Anchor Designer™
Software
Version 2.9.7376.0

Company:	HVE	Date:	11/20/2017		
Engineer:	k.warner	Page:	4/5		
Project:		-			
Address:	1932 1st Ave, Suite 720, Seattle, WA				
Phone:					
E-mail:					

3. Resulting Anchor Forces

SIMPSON

Strong-Tie

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2 + (V_{uay})^2}$ (lb)
1	0.0	0.0	1733.3	1733.3
2	0.0	0.0	1733.3	1733.3
3	0.0	0.0	1733.3	1733.3
Sum	0.0	0.0	5200.0	5200.0

Maximum concrete compression strain (‰): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 0

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

8. Steel Strength of Anchor in Shear (Sec. 17.5.1)

V _{sa} (lb)	$\phi_{ ext{grout}}$	ϕ	αV,seis	$\phi_{ ext{grout}} lpha_{ ext{V,seis}} \phi V_{ ext{sa}}$ (lb)
4940	1.0	0.65	0.85	2729

9. Concrete Breakout Strength of Anchor in Shear (Sec. 17.5.2)

Shear perpendicular to edge in y-direction:

$V_{by} = \min[7(I_e/d_a)^{0.2}\sqrt{d_a\lambda_a}\sqrt{f_c}c_{a1}^{1.5}; 9\lambda_a\sqrt{f_c}c_{a1}^{1.5}] \text{ (Eq. 17.5.2.2a \& Eq. 17.5.2.2b)}$								
I _e (in)	da (in)	λa	f′c (psi)	<i>c</i> a1 (in)	V _{by} (lb)			
4.00	0.500	1.00	2500	12.50	16578			
$\phi V_{cby} = \phi (A_V)$	′c / A∨co) Ψed,∨ Ψc,	$V \Psi_{h,V} V_{by}$ (Sec.	17.3.1 & Eq. 17.	5.2.1a)				
Avc (in ²)	Avco (in²)	$\Psi_{ed,V}$	Ψc,ν	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cby} (lb)	
225.00	703.13	1.000	1.000	1.768	16578	0.70	6565	

10. Concrete Pryout Strength of Anchor in Shear (Sec. 17.5.3)

$\phi V_{cpg} = \phi \min$	$n k_{cp}N_{ag}$; $k_{cp}N_{c}$	$_{bg} = \phi \min k_{cp} /k_{cp} $	Na / A _{Na0}) Ψec,N	a $\Psi_{ed,Na} \Psi_{cp,Na} N_{ba}$; k _{cp} (A _N	c / A _{Nco}) $arPsi_{ec,N} arPsi_{ed}$	$N \Psi_{c,N} \Psi_{cp,N} N_b (S$	Sec. 17.3.1 & E	q. 17.5.3.1b)
<i>K</i> _{cp}	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{ed,Na}$	$arPhi_{ extsf{ec,Na}}$		$arPsi_{cp,Na}$	N _{ba} (lb)	Na (lb)	
2.0	222.42	144.55	0.925	1.000		1.000	5528	7864	
A _№ (in²)	Anco (in²)	Ψec,N	$\Psi_{ed,N}$	Ψc,N	Ψcp,N	Nb (lb)	Ncb (Ib)	ϕ	
222.00	144.00	1.000	0.925	1.000	1.000	6800	9697	0.70	

SIMPSON

Strong-Tie

Anchor Designer™ Software Version 2.9.7376.0

Company:	HVE	Date:	11/20/2017
Engineer:	k.warner	Page:	5/5
Project:			-
Address:	1932 1st Ave, Suite 720, Seattle, W	/A	
Phone:			
E-mail:			

φV_{cpg} (lb) 11010

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1733	2729	0.64	Pass
T Concrete breakout y+	5200	6565	0.79	Pass (Governs)
Pryout	5200	11010	0.47	Pass

AT-XP w/ 1/2"Ø F1554 Gr. 36 with hef = 4.000 inch meets the selected design criteria.

12. Warnings

- Per designer input, the tensile component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor tensile force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.4.2 for tension need not be satisfied – designer to verify.

- Per designer input, ductility requirements for shear have been determined to be satisfied - designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

- Refer to manufacturer's product literature for hole cleaning and installation instructions.

SIMPSON

Strong-1

Anchor Designer™ Software

Version 2.9.7376.0

Company:	HVE	Date:	11/20/2017
Engineer:	k.warner	Page:	1/5
Project:		-	
Address:	1932 1st Ave, Suite 720, Seattle, W	/A	
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Strap Holdown- Wall D

2. Input Data & Anchor Parameters

General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor Material: F1554 Grade 36 Diameter (inch): 0.500 Effective Embedment depth, h_{ef} (inch): 4.000 Code report: IAPMO UES ER-263 Anchor category: -Anchor ductility: Yes h_{min} (inch): 5.25 c_{ac} (inch): 9.16 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø F1554 Gr. 36 Code Report: IAPMO UES ER-263

Project description: Exist 6" stem wall-midwall Location: Washington Fastening description: Wind Anchors-retrofit

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 6.00 State: Cracked Compressive strength, f_{\circ} (psi): 2500 $\Psi_{\circ,V}$: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Hole condition: Dry concrete Inspection: Continuous Temperature range, Short/Long: 150/110°F Ignore 6do requirement: Not applicable Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.75 x 14.00 x 0.25
SIMPSON

Strong-Tie

Anchor Designer™ Software Version 2.9.7376.0

Company:	HVE	Date:	11/20/2017			
Engineer:	k.warner	Page:	2/5			
Project:						
Address:	1932 1st Ave, Suite 720, Seattle, WA					
Phone:						
E-mail:						

Load and Geometry Load factor source: ACI 318 Section 5.3 Load combination: not set Seismic design: No Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

Strength level loads:

N_{ua} [lb]: 0 V_{uax} [lb]: 0 Vuay [lb]: 9347 M_{ux} [ft-lb]: 0 M_{uy} [ft-lb]: 0 Muz [ft-lb]: 0

<Figure 1>

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

Anchor Designer™ Software Version 2.9.7376.0

Company: HVE Date: 11/20/2013	7						
Engineer: k.warner Page: 3/5							
Project:							
Address: 1932 1st Ave, Suite 720, Seattle, WA	1932 1st Ave, Suite 720, Seattle, WA						
Phone:							
E-mail:							

<Figure 2>

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

SIMPSON

Strong-1

Anchor Designer™ Software Version 2.9.7376.0

Company:	HVE	Date:	11/20/2017				
Engineer:	k.warner	Page:	4/5				
Project:							
Address:	1932 1st Ave, Suite 720, Seattle, WA						
Phone:							
E-mail:							

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2 + (V_{uay})^2}$ (lb)
1	0.0	0.0	1168.4	1168.4
2	0.0	0.0	1168.4	1168.4
3	0.0	0.0	1168.4	1168.4
4	0.0	0.0	1168.4	1168.4
5	0.0	0.0	1168.4	1168.4
6	0.0	0.0	1168.4	1168.4
7	0.0	0.0	1168.4	1168.4
8	0.0	0.0	1168.4	1168.4
Sum	0.0	0.0	9347.0	9347.0

Maximum concrete compression strain (‰): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 0

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e_{Vy} (inch): 0.00 <Figure 3>

8. Steel Strength of Anchor in Shear (Sec. 17.5.1)

Vsa (lb)	$\phi_{ ext{grout}}$	ϕ	$\phi_{\textit{grout}} \phi V_{\textit{sa}}$ (lb)
4940	1.0	0.65	3211

9. Concrete Breakout Strength of Anchor in Shear (Sec. 17.5.2)

Shear perpendicular to edge in y-direction:

$V_{by} = \min[7(I_e)]$	$(J d_a)^{0.2} \sqrt{d_a \lambda_a} \sqrt{f}$	'cCa1 ^{1.5} ; 9λa√ f 'c0	Ca1 ^{1.5} (Eq. 17.5.2	.2a & Eq. 17.5.2	2.2b)			
I _e (in)	da (in)	λa	f'c (psi)	<i>c</i> a1 (in)	V _{by} (lb)			
4.00	0.500	1.00	2500	16.50	25142			
$\phi V_{cbgy} = \phi \left(A_{V} \right)$	/c / Α _{Vco})Ψec, v Ψ	$\mathcal{W}_{ed,\mathcal{V}} \mathcal{\Psi}_{c,\mathcal{V}} \mathcal{\Psi}_{h,\mathcal{V}} \mathcal{V}_{by}$	(Sec. 17.3.1 & E	q. 17.5.2.1b)				
Avc (in²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	𝖓h,∨	V _{by} (lb)	ϕ	ϕV_{cbgy} (lb)
317.28	1225.13	1.000	1.000	1.000	2.031	25142	0.70	9257

10. Concrete Pryout Strength of Anchor in Shear (Sec. 17.5.3)

 $\phi V_{cpg} = \phi \min|_{k_{Cp}} N_{ag}; k_{cp} N_{cbg}| = \phi \min|_{k_{Cp}} (A_{Na} / A_{Na0}) \Psi_{ec,Na} \Psi_{ed,Na} \Psi_{cp,Na} N_{ba}; k_{cp} (A_{Nc} / A_{Nc0}) \Psi_{ec,N} \Psi_{cp,N} \Psi_{cp,Nb}| (Sec. 17.3.1 \& Eq. 17.5.3.1b)$

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

SIMPSO	N Ar	Anchor Designer ^{IM}			pany:	HVE		Date:	11/20/2017			
				Engineer:		k.warner		Page:	5/5			
Strong-T	lie Sc	Software			Software			ect:				
Version 2.9.7376.0				Addr	ess:	1932 1st Ave,	Suite 720, Seat	ttle, WA				
	0			Phor	ne:							
				E-ma	ail:							
Kcp	A _{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{ed,Na}$	Ψec,N	а	Ψcp,Na	Nba (Ib)	Na (lb)				
2.0	346.56	144.55	0.925	1.00	0	1.000	6503	14416				
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{ec,N}$	$\Psi_{\text{ed},N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ				
346.05	144.00	1.000	0.925	1.000	1.000	6800	15116	0.70				

φV_{cpg} (lb) 20182

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Shear	Factored Load, Vua (Ib)	Design Strength, øVn (lb)	Ratio	Status
Steel	1168	3211	0.36	Pass
T Concrete breakout y+	9347	9257	1.01	Fail (Governs)
Pryout	9347	20182	0.46	Pass

FAIL! Selected anchor type and embedment do not meet the selected design criteria.

12. Warnings

- Designer must exercise own judgement to determine if this design is suitable.

- Refer to manufacturer's product literature for hole cleaning and installation instructions.